Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Brain ; 17(1): 10, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368400

RESUMO

The anatomical organization of the rodent claustrum remains obscure due to lack of clear borders that distinguish it from neighboring forebrain structures. Defining what constitutes the claustrum is imperative for elucidating its functions. Methods based on gene/protein expression or transgenic mice have been used to spatially outline the claustrum but often report incomplete labeling and/or lack of specificity during certain neurodevelopmental timepoints. To reliably identify claustrum projection cells in mice, we propose a simple immunolabelling method that juxtaposes the expression pattern of claustrum-enriched and cortical-enriched markers. We determined that claustrum cells immunoreactive for the claustrum-enriched markers Nurr1 and Nr2f2 are devoid of the cortical marker Tle4, which allowed us to differentiate the claustrum from adjoining cortical cells. Using retrograde tracing, we verified that nearly all claustrum projection neurons lack Tle4 but expressed Nurr1/Nr2f2 markers to different degrees. At neonatal stages between 7 and 21 days, claustrum projection neurons were identified by their Nurr1-postive/Tle4-negative expression profile, a time-period when other immunolabelling techniques used to localize the claustrum in adult mice are ineffective. Finally, exposure to environmental novelty enhanced the expression of the neuronal activation marker c-Fos in the claustrum region. Notably, c-Fos labeling was mainly restricted to Nurr1-positive cells and nearly absent from Tle4-positive cells, thus corroborating previous work reporting novelty-induced claustrum activation. Taken together, this method will aid in studying the claustrum during postnatal development and may improve histological and functional studies where other approaches are not amenable.


Assuntos
Claustrum , Camundongos , Animais , Gânglios da Base/metabolismo , Neurônios/fisiologia , Camundongos Transgênicos , Interneurônios
2.
Neurobiol Aging ; 123: 35-48, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36634385

RESUMO

The link between Alzheimer's disease (AD) and network hypersynchrony - manifesting as epileptic activities - received considerable attention in the past decade. However, several questions remain unanswered as to its mechanistic underpinnings. Therefore, our objectives were (1) to better characterise epileptic events in the Tg2576 mouse model throughout the sleep-wake cycle and disease progression via electrophysiological recordings and (2) to explore the involvement of noradrenergic transmission in this pathological hypersynchrony. Over and above confirming the previously described early presence and predominance of epileptic events during rapid-eye-movement (REM) sleep, we also show that these events do not worsen with age and are highly phase-locked to the section of the theta cycle during REM sleep where hippocampal pyramidal cells reach their highest firing probability. Finally, we reveal an antiepileptic mechanism of noradrenergic transmission via α1-adrenoreceptors that could explain the intriguing distribution of epileptic events over the sleep-wake cycle in this model, with potential therapeutic implications in the treatment of the epileptic events occurring in many AD patients.


Assuntos
Doença de Alzheimer , Epilepsia , Camundongos , Animais , Doença de Alzheimer/patologia , Camundongos Transgênicos , Sono/fisiologia , Modelos Animais de Doenças , Sono REM
3.
iScience ; 25(3): 103895, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35243253

RESUMO

Parvalbumin (PV)-expressing interneurons which are often associated with the specific extracellular matrix perineuronal net (PNN) play a critical role in the alteration of brain activity and memory performance in Alzheimer's disease (AD). The integrity of these neurons is crucial for normal functioning of the hippocampal subfield CA2, and hence, social memory formation. Here, we find that social memory deficits of mouse models of AD are associated with decreased presence of PNN around PV cells and long-term synaptic plasticity in area CA2. Furthermore, single local injection of the growth factor neuregulin-1 (NRG1) is sufficient to restore both PV/PNN levels and social memory performance of these mice. Thus, the PV/PNN disruption in area CA2 could play a causal role in social memory deficits of AD mice, and activating PV cell pro-maturation pathways may be sufficient to restore social memory.

4.
Neurobiol Aging ; 72: 147-158, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30273829

RESUMO

Recent findings show that parvalbumin (PV) interneuron function is impaired in Alzheimer's disease (AD), and that this impairment in PV function can be linked to network dysfunction and memory deficits. PV cells are often associated with a specific extracellular matrix, the perineuronal net (PNN). PNNs are believed to protect PV cell integrity, and whether the amyloidopathy affects PNNs remains unclear. Here, we evaluated the number of PV cells with and without PNNs in the hippocampus of the Tg2576 mouse model of AD at different stages of the disease. We show a deficit of PV+ and/or PV+/PNN+ cells in the areas CA1, CA2, and CA3 in Tg2576 as young as 3 months of age. Importantly, transient exposure to an enriched environment, which has proven long-lasting beneficial effects on memory in AD subjects, rescues the PV/PNN cell number deficits. We conclude that cognitive improvements induced by enriched environment in AD mouse models could be supported by a remodeling of hippocampal PV cell network and their PNNs.


Assuntos
Envelhecimento , Doença de Alzheimer , Meio Ambiente , Matriz Extracelular , Hipocampo/citologia , Interneurônios/citologia , Parvalbuminas/metabolismo , Fatores Etários , Envelhecimento/metabolismo , Envelhecimento/patologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...